Virtual Reality (VR) in urban planning – a helpful use of technology to increase the acceptance of a reduction in car traffic

Climate change and the associated attempt to take appropriate measures in order to reduce global warming are omnipresent. One current issue in this context is car traffic, especially in large cities, which produces a lot of emissions and, thus, contributes to climate change. European cities want to reduce the dominance of motorized individual transport in order to combat the environmental problems associated with it, such as noise, air pollution and land consumption (SPIEGEL, 2022). The aim is to redesign public space to improve the quality of life, so that everyone ultimately benefits.

In this context, the acceptance of citizens is particularly important for the implementation of transport policy measures, as resistance may arise before or during projects (Bosch & Peyke, 2011; Huber et al., 2020; Pleger, 2019). Studies show that citizens are more open to transport policy measures if they create quality of life and quality of place (Andor et al., 2020; Wicki et al., 2021; Wicki & Kaufmann, 2022). It is problematic that in the early planning phases, the opportunities for influence are greatest, but the interest of citizens is lowest (Wolf et al., 2020). One reason for the low level of interest is the provision of comprehensible information, which is often characterized by complex plan drawings, image montages, graphics or texts in technical language that are difficult or impossible for non-experts to understand (Spieker, 2021; Wolf et al., 2020).

This is where new technologies come into play, such as virtual reality glasses, which can visualize measures and changes in the cityscape and make them tangible. Several studies have demonstrated the potential of simple immersion in various new reality scenarios without prior knowledge or experience (Lovett et al., 2015; Schauppenlehner et al., 2018; Schwarze et al., 2022; Sinning et al., 2023). Through these so-called immersive visualization technologies, every citizen can also be made privy to a project and their opinion can be sought, thus increasing the acceptance of the measures and changes.

Research Goal

The aim of a study conducted by Jasmina Rückle, a Master student in our Business Psychology Programme, was to analyze the impact of the use of immersive visualization technologies on the acceptance of a reduction in moving and stationary car traffic among residents and people in a suburban area. Empirically, there is a gap on the question of whether immersive visualization technologies (e.g. VR glasses) have a stronger positive influence on the acceptance of car traffic reduction than less immersive visualization technologies (e.g. a video on a smartphone). There is also a lack of information on the factors that influence immersion, which were investigated in more detail in this study.

Study Overview

The experimental study was conducted in an urban environment in Stuttgart with a representative group of 60 participants, consisting of local residents and people with a personal connection to the surrounding area. During the experiment, the participants were presented with different scenarios related to traffic reduction. Firstly, what the urban environment currently looks like, and secondly, what it could look like in the future with less car traffic. The experiment was conducted under three different conditions: a) interactive virtual reality, b) visualization of a VR video and c) presentation of a video on a smartphone. Acceptance of the traffic reduction and other relevant variables were measured before and after the exposure of the virtual presentation.

The survey data was recorded on a 5-point Likert scale from not at all (1) to completely (5). The 60 respondents, with an average age of 34 years, were 48% male and 52% female. The two largest groups of people were professionals (55%) and students (32%), all of whom had regular contact with the selected urban environment.

Main Findings

Acceptance of car traffic reduction:
The residents and people with a direct connection to the selected urban environment had a high acceptance of the reduction of moving and stationary car traffic. They particularly disliked the noise caused by the traffic.

Immersive visualization technologies:
After the manipulation with the VR interaction, the acceptance of reducing car traffic differed significantly between the scenarios of how the neighbourhood looks now and how it could look in the future. For example, acceptance increased with the help of immersive technology in the interactive VR scenario. This was not the case for the other two conditions (VR video and smartphone video).

In our study, the level of immersion (how much the respondent can immerse themselves in the scenario) had a strong positive influence on acceptance. Immersion can be further enhanced by increasing the user’s attention and cognitive involvement, which can be promoted by, for example, a high-resolution animated scenario and a situation in which the person does not feel observed. People with a strong spatial imagination also experience better immersion. On the other hand, technology affinity had no effect on perceived immersion.

Conclusion

From the study it can be concluded that it may be a useful method in future urban planning to use technologies such as high immersion VR glasses to allow citizens to immerse themselves in the scenario and thus increase the acceptance for changes. This can be used for future scenarios that are otherwise not directly tangible to citizens, which can be animated in a way that is close to reality. As we have demonstrated, interaction in virtual reality can increase the acceptance of reducing car traffic in cities, which would facilitate the implementation of climate-friendly measures. A VR or smartphone video does not increase this acceptance. A high degree of immersion is important. This can be further increased by high attention, cognitive involvement and strong spatial imagination of the person using the immersive technology.

References

Andor, M. A., Frondel, M., Horvath, M., Larysch, T., & Ruhrort, L. (2020). Präferenzen und Einstellungen zu vieldiskutierten verkehrspolitischen Maßnahmen: Ergebnisse einer Erhebung aus dem Jahr 2018. List Forum für Wirtschafts- und Finanzpolitik, 45(3), 255–280. https://doi.org/10.1007/s41025-019-00184-x

Bosch, S., & Peyke, G. (2011). Gegenwind für die Erneuerbaren – Räumliche Neuorientierung der Wind-, Solar- und Bioenergie vor dem Hintergrund einer verringerten Akzeptanz sowie zunehmender Flächennutzungskonflikte im ländlichen Raum. Raumforschung und Raumordnung | Spatial Research and Planning, 69(2), 105–118. https://doi.org/10.1007/s13147-011-0082-6

Huber, R. A., Wicki, M. L., & Bernauer, T. (2020). Public support for environmental policy depends on beliefs concerning effectiveness, intrusiveness, and fairness. Environmental Politics, 29(4), 649–673. https://doi.org/10.1080/09644016.2019.1629171

Lovett, A., Appleton, K., Warren-Kretzschmar, B., & Von Haaren, C. (2015). Using 3D visualization methods in landscape planning: An evaluation of options and practical issues. Landscape and Urban Planning, 142, 85–94. https://doi.org/10.1016/j.landurbplan.2015.02.021 

Pleger, L. E. (2019). Democratic Acceptance of Spatial Planning Policy Measures. Springer International Publishing. https://doi.org/10.1007/978-3- 319-90878-6

Schauppenlehner, T., Kugler, K., & Muhar, A. (2018). Anwendungserfahrungen von Virtual Reality als Kommunikationswerkzeug in partizipativen Planungsprozessen. Wichmann Verlag. https://doi.org/10.14627/537647003

Schwarze, J., Vöckler, K., Hinde, S., David, E., Le-Hoa Võ, M., & Eckart, P. (2022). Virtual Reality im Mobilitätsdesign: Experimentelle Forschung zum Einsatz von VR-Simulationen. In P. Eckart, M. Knöll, M. Lanzendorf, & K. Vöckler (Hrsg.), Mobility Design (S. 198–215). De Gruyter. https://doi.org/10.1515/9783868597936-019 

Sinning, H., Brandenburger, Y., Kruse, R., & Rogoll, S. (2023). Partizipative Stadtentwicklung mit XR-Technologie. Urbane Transformation als gesamtgesellschaftliche Aufgabe. https://www.vhw.de/fileadmin/user_upload/08_publikationen/verbandszeitschrift/FWS/2023/FWS_2_2023/FWS_2_23_Gesamtausgabe.pdf

SPIEGEL. (2022). Barcelona, London oder Paris: Wie Europas Metropolen das Auto loswerden wollen. SPIEGEL Mobilität. https://www.spiegel.de/auto/barcelona-london-oder-paris-wie-europas-metropolen-dasauto-loswerden-wollen-a-443d7682-8ab9-49e7-86d4-977a8

Spieker, A. (2021). Chance statt Show – Bürgerbeteiligung mit Virtual Reality & Co.: Akzeptanz und Wirkung der Visualisierung von Bauvorhaben. Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658- 33082-8

Wicki, M., Hofer, K., & Kaufmann, D. (2021). Acceptance of densification in six metropolises: Evidence from combined survey experiments [Application/pdf]. 28 p. https://doi.org/10.3929/ETHZ-B-000519861 

Wicki, M., & Kaufmann, D. (2022). Accepting and resisting densification: The importance of project-related factors and the contextualizing role of neighbourhoods. Landscape and Urban Planning, 220, 104350. https://doi.org/10.1016/j.landurbplan.2021.104350

Wolf, M., Söbke, H., & Wehking, F. (2020). Mixed Reality Media-Enabled Public Participation in Urban Planning. In T. Jung, M. C. Tom Dieck, & P. A. Rauschnabel (Hrsg.), Augmented Reality and Virtual Reality: Changing Realities in a Dynamic World (S. 125–138). Springer International Publishing. https://doi.org/10.1007/978-3-030-37869-1

VR in applied research [part 2]: When our imagination doesn’t reach far enough – Virtual reality as a participatory method to increase the acceptance of sustainable mobility

It is expected of cities to provide an attractive, but also competitive place to work and live, while managing the needs of all transportation users and meeting the increasing demands of climate, environmental and health protection all at the same time. Not meeting these demands often simultaneously relates to a reduction in the inhabitants’ quality of life. An important component for a high standard of living in cities is mobility, which is one aspect of our institution’s research project, iCity, aimed at developing the intelligent city of the future (read more here about this project).

Continue reading “VR in applied research [part 2]: When our imagination doesn’t reach far enough – Virtual reality as a participatory method to increase the acceptance of sustainable mobility”

How can we facilitate citizen participation in urban planning processes? An eye tracking study of a 3D participation platform

Citizen participation is a major driver of democratic and socio-economic development, as well as a key method of citizen empowerment (NDI, 2021). Involving citizens in urban planning processes can help create a sense of community, generate valuable ideas, and increase acceptance of planning proposals (OECD, 2019). Facilitating citizen participation may help achieve these positive outcomes.

Kesselkompass3 – Inform, Involve, Cooperate – is an innovative 3D platform that enables citizen participation processes to take place online. The platform, developed by M4_LAB, offers a variety of tools and information to connect urban planners and citizens. On the platform itself, there is a 3D map of Stuttgart which offers several interactions especially for citizens but also planners. In addition, participation projects that have already been completed or are still in planning are presented. The platform has already been used by more than 600 citizens in previous projects and will now be further developed.

Continue reading “How can we facilitate citizen participation in urban planning processes? An eye tracking study of a 3D participation platform”